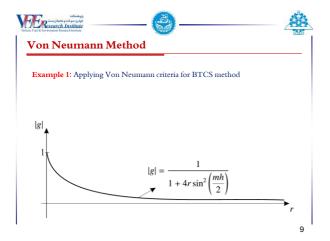
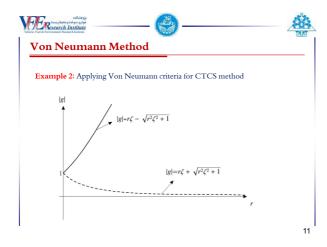
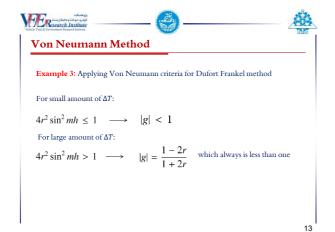


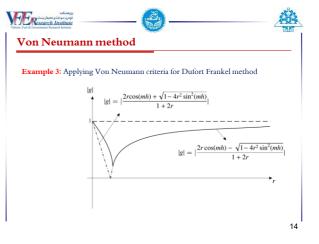
Von Neu	mann Me	thod	
u(x,0) = f(x),	$-\infty < x < +\infty$ $-\infty < x < +\infty$ eries for u function	2	
$u(x, t) = \hat{u}(t)e^{it}$ $u(j\Delta x, n\Delta t) =$		FTCS method	$u_{j}^{n+1} = u_{j}^{n} + r(u_{j-1}^{n} - 2u_{j}^{n} + u_{j+1}^{n})$
Which $\rightarrow r$	$= k\alpha/h^2$		
$\longrightarrow \hat{u}_n$	$u_{i+1}e^{imx_j} = \hat{u}_n e^{inx_j}$	$^{nx_j} + r\hat{u}_n(e^{imx_{j+1}} - 2$	$e^{imx_j} + e^{imx_{j-1}})$


Il Carlos in the state	
Von Neumann Method	
By dividing on e^{imx_j} $\begin{cases} \hat{u}_{n+1} = \hat{u}_n[1 + r(e^{imh} + e^{-imh} - 2)] \\ \text{Which} h = x_{j+1} - x_j = x_j - x_{j-1} \end{cases}$	
$\longrightarrow \hat{u}_{n+1} = \hat{u}_n[1 + r(2\cos(mh) - 2)]$	
Trigonometric equations $\hat{u}_{n+1} = \hat{u}_n [1 - 4r \sin^2(mh/2)]$	
Amplification factor: $g = \frac{\hat{u}_{n+1}}{\hat{u}_n}$	
In this example: $g = 1 - r \sin^r (mh/r)$	
	2

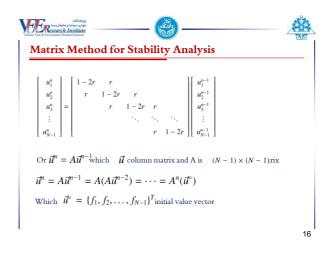
VER Constant and Annual Constants
Von Neumann Method
Stability condition: $\left \frac{\hat{u}_{n+1}}{\hat{u}_n} \right \le 1$
For the last example: $ 1 - 4r \sin^2(mh/2) \le 1 \implies -2 \le -4r \implies r \le \frac{1}{2}$
The important steps of Von Neumann analysis:
- The solution of finite difference problem can be assume as the combination of Fourier modes
$\hat{u}_n e^{imx_j}$
– Using $\hat{u}_n e^{imx_j}$ n finite difference equation and finding : \hat{u}_{n+1}/\hat{u}_n
- Von Neumann stability condition: $\left \frac{\hat{H}_{n+1}}{\hat{H}_n}\right \le 1$ for all modes
5

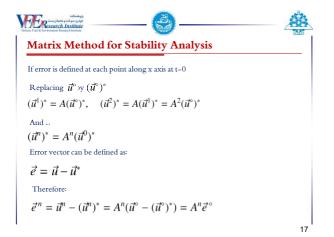

Beneficial and a second	
Von Neumann Method	
Applications and limitations of Von Neumann method	
- Can be used only for linear equations	
- The effect of boundary conditions are not considered in stability analysis	
– For PDEs discretization which used two time steps, the stability conditions can be determined by:	
a) if g is a real number : $ g \le 1$	
b) If g is a complex number: $ g ^2 \le 1$	
 For PDEs discretization which used three time steps, the Amplification factor is a matrix. for Eigenvalues of this matrix: 	
a) if λ_i is a real number : $ \lambda_i \leq 1$	
b) If λ_i s a complex number: $ \lambda_i ^2 \leq 1$	
	6

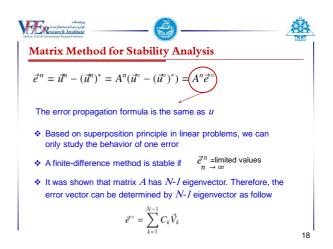

Example	1: Applying Von Neuma	nn criteria for B	TCS method
PDE:	$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ BTCS methods	$\stackrel{\text{od}}{\rightarrow} u_j^{n+1} = u_j^n$	$u_{j-1}^{n} + r(u_{j-1}^{n+1} - 2u_{j}^{n+1} + u_{j+1}^{n+1})$
$a_j^n = \hat{u}_n e^i$	nx _j		
$\hat{u}_{n+1} = \hat{u}_n$	$+ r\hat{u}_{n+1}(e^{-imh} - 2 + e^{imh})$	^h)	
p = 1 + p	$rg(2\cos mh - 2) = 1 - 1$	$4rg \sin^2 \frac{mh}{m}$	$\implies g = \frac{1}{1 + 4r \sin^2 \frac{mh}{2}}$



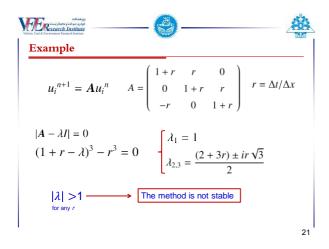

TE r sca	skanje konjsko poloči n konsti konst	
Von N	Neumann Method	
Examp	le 2: Applying Von Neumann criteria for CTCS method	
PDE:	$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \xrightarrow{\text{CTCS method}} u_j^{n+1} = u_j^{n-1} + 2r(u_{j-1}^n - 2u_j^n + u_j^n)$	+1)
$u_j^n = \hat{u}_n$	e^{imx_i}	
$\hat{u}_{n+1} =$	$\hat{u}_{n-1} + 2r\hat{u}_n(e^{-imh} - 2 + e^{imh})$	
$g = \frac{1}{g} +$	$f^2 2r(2\cos mh - 2) \longrightarrow g = 2r(\cos mh - 1) \pm 2\sqrt{r^2(\cos mh - 1)}$	$r^2 + 1$
$\xi = 2($	$\xrightarrow{\cos mh - 1)} g = 2r\xi \pm 2\sqrt{r^2\xi^2 + 1}$	
		10

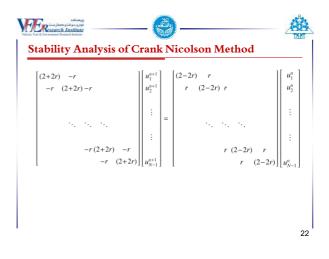


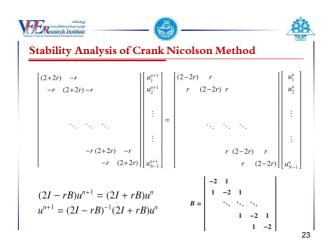

Exam	ole 3: Applying Von Neuman	n criteria for	Dufort Frankel met	hod
PDE:	$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \frac{\text{Dufort Frank}}{dt}$	$\stackrel{\text{el}}{\Rightarrow} u_j^{n+1} = \left(\begin{array}{c} \\ \end{array} \right)$	$\left(\frac{1-2r}{1+2r}\right)u_j^{n-1} + \frac{2r}{1+2r}$	$\frac{1}{2r}(u_{j+1}^n + u_{j-1}^n)$
$u_j^n =$	$\hat{u}_n e^{imx_j}$			
$\hat{u}_{n+1} =$	$\left(\frac{1-2r}{1+2r}\right)\hat{u}_{n-1} + \frac{2r}{1+2r}\hat{u}_{n-1}$	$e^{imh} + e^{-imh}$	imh)	
$r^{2} - \left[- \frac{1}{2} \right]$	$\frac{4r}{1+2r}\cos mh \left[g - \frac{1-2r}{1+2r} = 0\right]$	$\rightarrow g = \frac{1}{2}$	$2r\cos mh \pm \sqrt{1-4}$	$r^2 \sin^2 mh$

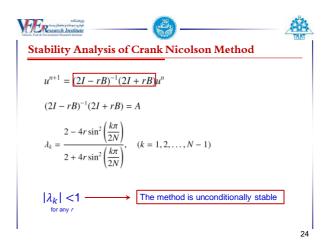


Viele for a formation of the state		1833
Matrix Method for Stability Analysis		
$\vec{e}^{i} = A\vec{e}^{\circ} = A\sum C_{k}\vec{V}_{k} = \sum C_{k}A\vec{V}_{k}$	$A\vec{V}_k = \lambda_k \vec{V}_k$	
$ec{e}^1 = \sum C_k \lambda_k ec{V}_k$		
$ec{e}^2 = \sum C_k \lambda_k^2 ec{V}_k$		
$ec{e}^n = \sum C_k \lambda_k^n ec{V}_k$		
		19

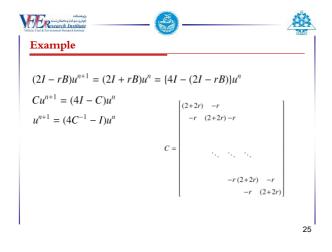

$$\overrightarrow{e}^{t} = A\vec{e}^{\circ} = A \sum_{k} C_{k} \vec{v}_{k} = \sum_{k} C_{k} A \vec{v}_{k} \qquad A \vec{v}_{k} = \lambda_{k} \vec{v}_{k}$$

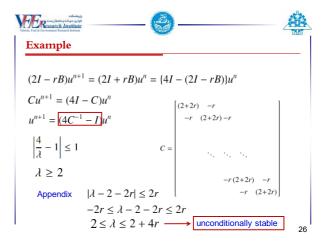

$$\vec{e}^{t} = \sum_{k} C_{k} \lambda_{k} \vec{v}_{k}$$

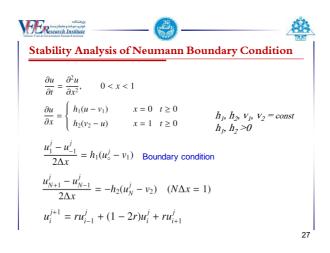

$$\vec{e}^{2} = \sum_{k} C_{k} \lambda_{k}^{2} \vec{v}_{k}$$

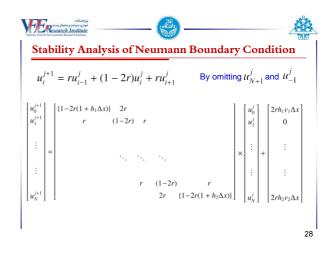

$$\vec{e}^{n} = \sum_{k} C_{k} \lambda_{k}^{n} \vec{v}_{k} \qquad \lambda_{k} = 1 - 4r \sin^{2} \frac{k\pi}{2N}$$

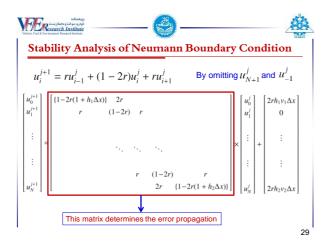
$$\left|1 - 4r \sin^{2} \frac{k\pi}{2N}\right| \le 1 \qquad r \le \frac{1}{2}$$

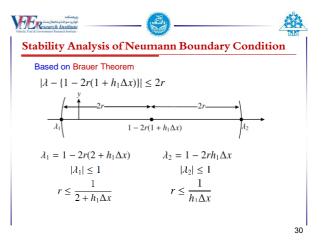


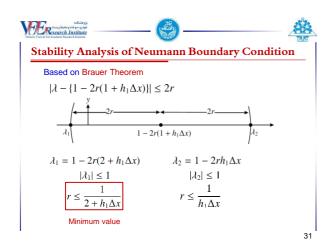


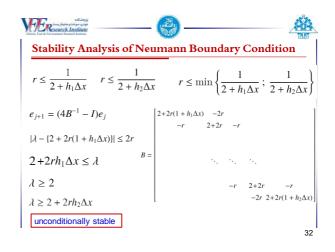





6







8